Semi-supervised network inference using simulated gene expression dynamics
نویسندگان
چکیده
منابع مشابه
Semi-supervised network inference using simulated gene expression dynamics.
Motivation Inferring the structure of gene regulatory networks from high-throughput datasets remains an important and unsolved problem. Current methods are hampered by problems such as noise, low sample size, and incomplete characterizations of regulatory dynamics, leading to networks with missing and anomalous links. Integration of prior network information (e.g. from pathway databases) has th...
متن کاملSupervised, semi-supervised and unsupervised inference of gene regulatory networks
Inference of gene regulatory network from expression data is a challenging task. Many methods have been developed to this purpose but a comprehensive evaluation that covers unsupervised, semi-supervised and supervised methods, and provides guidelines for their practical application, is lacking. We performed an extensive evaluation of inference methods on simulated and experimental expression da...
متن کاملTransductive Inference and Semi-Supervised Learning
This chapter discusses the difference between transductive inference and semi-supervised learning. It argues that transductive inference captures the intrinsic properties of the mechanism for extracting additional information from the unla-beled data. It also shows an important role of transduction for creating noninductive models of inference. Let us start with the formal problem setting for t...
متن کاملSemi-supervised SRL System with Bayesian Inference
We propose a new approach to perform semi-supervised training of Semantic Role Labeling models with very few amount of initial labeled data. The proposed approach combines in a novel way supervised and unsupervised training, by forcing the supervised classifier to overgenerate potential semantic candidates, and then letting unsupervised inference choose the best ones. Hence, the supervised clas...
متن کاملSemi-Supervised Multi-View Learning for Gene Network Reconstruction
The task of gene regulatory network reconstruction from high-throughput data is receiving increasing attention in recent years. As a consequence, many inference methods for solving this task have been proposed in the literature. It has been recently observed, however, that no single inference method performs optimally across all datasets. It has also been shown that the integration of predictio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2017
ISSN: 1367-4803,1460-2059
DOI: 10.1093/bioinformatics/btx748